
CQL
- a query language for retrieving

multimedia information

Peter Rosengren

1. Introduction

Today corporate users need to access and combine information from a number of
information sources. Some business information is stored in relation al databases, while
other important information is accessed through searches in a text retrieval system.
Additional sources of information may be picture and drawings archives. Each
information source might have its own data model and access mechanism, or query
language, causing severe usability problems.

The objective of the Intuitive project is to provide efficient and easy to use tools for end
users to access information in heterogeneous corporate databases.

Within the project we are investigating users and application requirements to define a
generic architecture for Information Retrievai from heterogeneous databases.

The project also address the needs of application designers in developing methods and
tools for customising the generic software architecture for different applications. In this
sense Intuitive can be seen as both ageneric retrievai system as weIl as a system for
creating information retrieval applications.

Rosengren et al have already given an overview of this work (Rosengren93a],
(Rosengren93b], [Rosengren93c]. Wingstedt et al discuss the requirements on the
functionality of end-user tools for Information Retrieval and their user interface
[Wingstedt93]. Bern et al address the needs of application developers in describing a
first prototype implementation of the TooIs applied in three different applications
[Bern93]. The reader that is unfarniliar with the Intuitive Project is referred to these
reports.

The purpose of this document is to describe a tirst version of the internal query
language used within Intuitive. This language is called Conceptual Query Language,
CQL.

The purpose of CQL is to allow the Intuitive Tools and other modu1es such as the
Dialogue Manager to represent users' queries across a heterogeneous information
space. A CQL query is expressed in terms of restrictions on entities, attributes,
re1ationships and value contents that are known by the Intuitive System.

Within Intuitive we employ a 3-schema level framework [Rosengren93a],
(Rosengren93c] :

Presentation level

Conceptuallevel

Database leve!

Figure 1.1A 3-schema levelframework.

At the database level each database has a logical database model and a specific access
language - examples are areiationai database with SQL, a document category system
with free text search, a picture database with keyword searches.

The conceptuallevel constitutes the conceptual modelling of real world objects within a
particuIar application. Information about an object at this level might be distributed over
several databases, for instance information about a Project Entity could be project data
stored in a reIational databases, project description found in a full text database and a
picture with project participants in a picture database.

At the presentation level presentation aspects are described.

The scope of CQL is the conceptuallevel, i.e. CQL queries are expressed in terms of
concepts defined at this level. This implies that applications issuing CQL queries can
access data from various databases without concern of their specific characteristics, e.g.
regarding structure and access language.

The document is organised as follows. Chapter 2 discusses the requirements on CQL.
Chapter 3 describes the language. Finally , in Chapter 4 we give examples of how the
language is used.

•

•

•

2. Requirements on CQL

Before describing CQL, we need to consider the requirements on the language. Two
questions immediately arise:

• Who will produce a query?

• What do we need to express in a query?

Within Intuitive queries will be produced in three different ways:

Directly by a user through the visual query system.

Directly by a user through the naturallanguage inteiface.

By the Dialogue Manager that constructs a CQL-query based on
what the user does and says.

When queries are formulated through the visual query interface, the system can restrict
the user queries by displaying the structure of the conceptual model and only accept
queries that are based on entity c1asses and relationships known by the system. This
type of query we call a conceptual query since it asks about information stating
restrictions on known concepts, i.e. entity c1asses, relationship c1asses and attribute
c1asses.

When queries are formulated through the naturallanguage interface there of course will
be precise queries but we also must expect queries that are fuzzy and imprecise. Users
rnight ask queries like "are there any projects about multimedia databases?" , without
specifically stating which entity c1asses are involved in the query or which attributes to
be restricted.

Fuzzy and imprecise queries are common in text retrieval system but rarely supported in
traditional database environments. Conventional databas e languages assume that the
system has complete knowledge about the data in the database, i.e. the database schema
completely describes every instance in the database [Fuhr93]. To be able to answer the
examp1e query above a conventional DBMS would require that the entity Project has an
attribute that explicitly describes its type, category or subject, but there would still be no
way to rank entities according to how relevant they are with respect to the user's query.
In CQL we introduce a special function called "about" to handle imprecise queries. The
about-function can be seen as a vague predicate [Fu.hr90]. 1

In some cases a user or a module rnight be able to specify an attribute name and a
formal restriction but not the corresponding entity. An example is a user that knows that
"Intuitive" is a name but not what it is a name of, e.g. a company, a project or a
document. This would require a query that can be evaluated over all entity c1asses that
have an attribute called "name".

In a more extreme case a user rnight only know a value but not what it stands for and
wants to find out what the system knows about this value, i.e. the system needs to
support access by value [Motr086].

Motro developed the system Baroque which offered the user four functions to sean a
database which were called "What is it?", "What is known about it?", "What is the
connection?" and "Any others like it?".

a

In Baroque it was possible to ask questions like:
> "What is Mozart?"
Systern answer: Mozart is NAME of COMPOSER, AUTHOR of COMPOSITION

> "What is known about Mozart?"
Systern answer: Mozart is
NAME of COMPOSER having

COUNTRY Austria
PERIOD Classical
YEAR_OF_BIRTH 1756
YEAR_OF_DEATH 1791

AUTHOR of COMPOSITION having IDENTIFICATION
(Hunt, Mozart)
(Jupiter, Mozart)
(Magic_Flute, Mozart)

Queries like this were supported by an extra table in the database storing pairs of values
and attributes. To support features like this we need to introduce the concept of
unbound variables in CQL that can be bound to different entity classes and attribute
classes at evaluation time. Given unbound variables in CQL and the Dictionary
Structure of Intuitive [Rosengren93c] access by value is easy to implement within
Intuitive.

We will refer to this type of queries as variable queries.

Finally in a multimedia environment it will be natural to ask queries about the content of
the multi media objects rather than their conceptual classification. For a text document
this could mean proximity searching, phrase searching etc. For images this could mean
pattern matching of a bitmap against the image. This type of query is called a content
query.

Below we will list the requirements for the various types of querying that we are
supporting. A general requirement is of course that it should be possib1e to mix all
modes of searching within one query.

2.1. ConceptuaI queryin~:

It must be possible to ask for entities from a certain entity dass by giving logical
constraints of arbitrary complexity on its attributes.

It must be possible to express constraints about the relationships between entities. For
instance it should be possible to ask for entities having three relationships of a celtain
Relationship dass to entities for which other constraints are supplied. In this way
chains of combined entity restrictions and relationship constraints can be formed.

2.2. Va~ue querying

It should be possib1e to ask if an entity is associated with a set of linguistic terms, like
"multimedia, databases, GUl, MMDBMS" [Rosengren93d]. This corresponds to
relevance searching found in most modern text retrieval system and could also be
applied to keyword based systems containing pictures, videos, drawings, slides etc.

•

2.3. Variable querying

It should be possible to express a query that evaluates over several entity classes.

It should be possible to express a constraint that evaluates over several attributes of a
specific entity class.

1t should be possible to express a query that evaluates over several relationships for a
particular entity class.

2.4. Content querYlng:

For multimedia objects it must be possible to express constraints about their content.
Advanced text searching should be supported including proximity search, phrase
searching and use of thesaurus.

It should also be possible to use extemally defined functions that are evaluated over the
objects in a database.

3. Language Description

CQL uses, like most query languages, abasic "select-from-where" syntax. Other query
languages for querying about multimedia objects have used other syntactical structures.
In the Multos Query Language the following syntax where used for querying about
multimedia documents in an office filing system [Bertino90].

FIND DOCUMENTS [VERSION version-clause]
[SCOPE scope-clause]
[TYPE type-clause]
WHERE condition-clause

Celanto et al also report about a system for querying multimedia documents in an office
environment [Celant091]. Their query syntax is:

retrieve dass_name (typeslinstances)

[inpartition]

[with conceptuaCdescription]

[environment environment_description]

[contents contents_description]

We think it is unnecessary to depart from the conventional select-from-where-syntax.
The basic CQL-statement therefore look like a SQL-query:

SELECT *
FROM Person
WHERE Person.Age > 20 AND
Person. Firs tName "Peter" ;

The CQL-syntax differs from the SQL-syntax in that CQL makes entity constraints and
relationship constraints explicit. A query that involves constraints on two entity c1asses
and a relationship between the entity c1asses looks like:

SELECT Person.Name
FROM Person
WHERE Person.Age > 20

SELECT *
FROM Project
WHERE Project.StartDate >= 920518

RELATIONSHIPS
Person WorksIn Project

•

•

In SQL this would be expressed in one compound statement. It would of course also be
possible to define CQL in that way but we think this syntax favours darity. A full
description of the syntax is given in the appendix.

Moreover, the module that produces the CQL query does not have to have knowledge
about how a relationship is calculated, it merely have to state that the relationship
should hold.

Also, this syntactic form is more suitable for the Query Splitter that will take a CQL
query and split it into subqueries which are sent to various databases. Note that the
performance of the system will not be determined by the order of the two sub-queries in
CQL. Performance will rely on the Query Splitter and its internal modules.

In this section we will explain the various constructs in CQL and their semantics.

3.1. Ouerv Specification

A query consists of two parts:

A set of entity set specifications each specifying a subset of instances
to be retrieved from one entity dass and which attributes to show.

A set of relationships that should hold between entity instances
specified in the entity set specifications part.

A query can be seen as a function that takes a conceptual schema as input and maps it
into a subset of that schema.

3.2. Entity Set Specification

An Entity Set Specification defines a set of entities within the databases that fulfil some
restriction.

The specification of an entity set to be retrieved consists of four parts:

• A specification of the output to be retrieved from the entity.

• Name of the entity dass to be searched.

• Restrictions on attributes for each entity in that dass.

• Restrictions specifying "about" criteria.

SELECT *
FROM Person
WHERE Person.Name = "Peter"
This retrieves all entities belonging to entity dass Person where attribute "Name" equals
"Peter" .

If no restrictions for attributes are given all entities of the dass are returned.

Output can be specified by giving a list of the attributes to be retrieved. The" *"
character has the usual meaning of "select all". An empty output specification is also
possible.

It is possible to use unbound variables in an Entity Set Specification:

SELECT *
FROM X
WHERE X.Name = "Peter"

The above Entity Set Specification is instantiated into one Entity Set Specification for
each entity dass that has an attribute called "Name". It is possible to controi the
instantiation by giving a list of entity classes to be considered, see example below:

SELECT *
FROM X [Projeet, Result]
WHERE X.Name = "Intuitive"

Variables can also be used at the attribute level. The use of variables makes it easy to
implement access by value [Motr086] within Intuitive.

SELECT *
FROM X
WHERE X.Y = "Peter Rosengren"
An Entity Set Specification is a function that takes an entity dass as input and maps it
inta a subdass of that entity dass.

3.3. AUribnte Restrictions

Compound attribute restrictions are allowed with the normal nesting of logical
connectives:
SELECT *
FROM Person
WHERE (Person.name = "Peter" AND Person.age = 25) OR (Person.name =
"Carl" AND Person.age > 20)
The above query will retrieve all entities from Entity class Person that either has a name
equal to Peter and an age equal to 25, or a name equal to Carl and an age that is over
20.

An attribute can be compared with an another attribute belonging to the same entity or to
another related entity.

The restrictions that are possible to express for an attribute will depend on its data type.

3.4. Vagne Restrictions
SELECT *
FROM Report
WHERE Report.About(0.75, "user interface", "design")
The about function accepts a relevance threshold value and a set of terms as input. It
calculates a relevance measure between Oand 1 for each entity and assigns this measure
to the entity. It then orders the entity set with respect to this relevance measure. It then
truncates the ordered entity list with respect to the given threshold value. Nate that it is

possible to leave out the threshold value and in that way get a relevance measure for all
entities in the c1ass,

About can be seen as a vague predicate [Fuhr90]. Other vague predieates are possible
such as "at most", "high", "low" and "some", These are not inc1uded in the first
version of CQL but the language can be extended to handle other vague predicates.

Normal attribute restrictions can be mixed with vague predieates. If this is done, the
attribute restrictions have the highest precedence, i.e. only entities fulfilling the attribute
criteria are considered for evaluation of the about restriction.

Consider the following query:
SELECT *
FROM Project
WHERE Project.StartDate > 920101
AND
Project.About(0.75, "user interface", "design")

This query will first find all projects that have started after 1 January 1992 and then for
each how them ca1culate the to which extent they have to do with user interface design.
This means that a project with very high relevance for user interface design but with a
start date in 1991 will not be inc1uded in the answer.

Another way to put this is that attributes represents known facts about an entity and that
facts always should be considered first before dealing with vague ideas.

3.5. Relationship Restrictions

Three types of constraints can be expressed about relationships:

• That they exist.

• That they do not exist.

• That they have a certain cardinality.

A relationship restriction is always evaluated within the context of two entity set
specifications:

SELECT *
FROM Person
WHERE narne="Peter" AND age > 20

SELECT *
FROM Car
WHERE year = 1980

RELATIONSHIPS
Person owns(3) Car
The above statement will retrieve all entities from entity dass Person which has three
"owns-relations" to entities within the entity set "Cars made in year 1980". Note that if
a person owns three cars but only two made 1980 it will not be part of the answer.

Note also if a person owns four or more cars made 1980 it will not be part of the
answer.

The expression ownsO means that there exists some relationship. It could have been
expressed by owns(>=l).

4. Query Examples

In this section we will give some examples of how CQL works. We will go through
examples to show how CQL meets the reqllirements for each of the search modes
discussed above, Le. conceptual querying, vague querying, variable querying and
content querying.

Each query example will tirst be expressed as a naturallanguage phrase and then a
corresponding CQL statement. Note that this is only for ease of reading, it does not
specify the rules for translation of naturalIanguage statements into CQL.

4.1. Conceptual Ouerying

Assume the following simple conceptual model:

Person

Name
Age
Sex

owns

Car
Year
Brand

made by

Manufacturer

Name
Country
Revenues

Figure 4.1 Example conceptual model

BeIow we will give some examples of llser queries and how they are expressed in
CQL.

Query: Give me all persons named Peter that are older than 20 years.

SELECT *
FROM Person
WHERE Person.name="Peter" AND Person.age > 20

Query: Give me the age of all persons named Peter that are older than 20 years and that
owns a ear made after 1985.

SELECT Person.Age
FROM Person
WHERE Person.narne="Peter" AND Person.age > 20

SELECT

FROM Car
WHERE Car.year > 1985

RELATIONSHIPS
Person owns() Car

Query: Give me all persons named Peter that are older than 20 years and that owns a
ear made before 1980 by a Japanese manufaeturer. Also, display the name of the
Manufaeturer.

SELECT *
FROM Person
WHERE Person.name="Peter" AND Person.age > 20

SELECT
FROM Car
WHERE Car.year < 1980

SELECT Manufacturer.Name
FROM Manufacturer
WHERE Manufacturer.country "Japan"

RELATIONSHIPS
Person owns() Car
Car madeBy() Manufacturer

4.2. Va~ue Ouerying

Assume the following eonceptual model:

.-employed by

~ ""'oog' " 01

",,,,,,'bl, jm wmk"~"

Produces of is a

.~
expiolted ast=j

Sales
Presentation

Academic
Presentation

is a

A

~~

Figure 4.2 Example conceptual model

Also assume that Person, Project, Department and Product are stored in a relational
database, while Academic Presentation and Repor! are to be found in a text database
and Sales Presentation as weIl as Prototype are stored in a video database. Report and
Prototype are subc1asses of Result while Academic Presentation and Sales Presentation
are subc1asses of Presentation. The attributes of the entity c1asses are not shown in the
figure above.

Note that the first parameter to the about-function is the required threshold value. This
could be any number provided by the system or the user. We will use 0.75 (75 percent
relevance) as a default value throughout the examples.

Query: Give me all results about visuallanguages for multimedia databases

SELECT *
FROM Result
WHERE Result.About{O.75, "multimedia", "databases", "visual
language")

Query: Give me all information conceming projects, that have started after 920101 and
have produced reports about multimedia databases

SELECT *
FROM Project
WHERE Project.StartDate > 920101

SELECT
FROM Report
WHERE Report.About(0.75, "multimedia" , "databases")

RELATIONSHIPS
Project Produces() Report

Query: Give me all presentation material about the Dialogue Manager in the Intuitive
project

SELECT *
FROM Presentation
WHERE Presentation.About (O.75, "dialogue" , "intelligent",
"cooperative", "dialogue manager")

SELECT
FROM Project
WHERE Project.Name "Intuitive"

RELATIONSHIPS
Presentation of() Project

4.3. Variable Ouerying

We will assume the same conceptual model as in the previous sectian.

Query: Do you have any presentations or reports about user interface design?

SELECT *
FROM X [Presentation, Report]
WHERE X.About(O.75, "user interface", "design")

Query: What do you know about graphical user interfaces and query language design?

SELECT *
FROM X
WHERE X.About(O.75, "user interface", "graphical")
OR X.About(O.75, "query language" , "design")

Query: Show me all projects that do not have anything to do with multimedia but are
related to something that has to do with multimedia databases.

SELECT *
FROM project
WHERE NOT Project.About(O.75, "multimedia")

SELECT
FROM X
WHERE X.About(O.75, "multimedia" , "databases")

RELATIONSHIPS
Project Y X

Query: Is there any Product that corresponds to the abbreviation XPMG?

SELECT *
FROM Product
WHERE Product.X = "XPMG"

Query: What do you have that is named Roland?

SELECT *
FROM X
WHERE X.Name = "Roland"

Query: What is Roland?

SELECT *
FROM X
WHERE X.Y = "Roland"

Query: Is there anything at all about Roland?

SELECT *

FROM X
WHERE X.Y = "Roland"
OR X.About(O.75, "Roland")

4.4. Content Ouerying

In this section we will give some examples of how content expressions are formulated.

4.4.1. Text
Proximity

Query: Retrieve all project descriptions that contain the word databases within a
distance of 5 words from multimedia.

SELECT *
FROM Project
WHERE Project.Description CONTAINS TEXT "databases" WITHINW5
"multimedia"

Free Text

Query: Retrieve all project descriptions that contain the phrase "multimedia databases
need graphical interfaces".

SELECT *
FROM Project
WHERE Project.Description CONTAINS TEXT "multimedia databases need
graphical interfaces"

Any Order

Query: Retrieve all project descriptions that contain the two words "multimedia" and
"database" in any order. Allowall different inflections of "database".

SELECT *
FROM Project
WHERE Project.Description CONTAINS TEXT ANY STEM "database",
"multimedia"

4 .4 .2. Other Media Types
For other media types than text, there currently are three operators available.
CONTAINS checks if the media object is contained within another object. PART_OF
checks if the media object is part of another object. LIKE checks if the media object is
similar to another object. In all these cases we rely on the underlying database to
prov ide such a comparison facility .

Assume that the attribute "description" is an image. Then, the following questions
would be possible.

SELECT *
FROM Person
WHERE Person.Description CONTAINS picture_ref

SELECT *
FROM Person
WHERE Person.Description PART_OF picture_ref

SELECT *
FROM Person
WHERE Person.Description LIKE picture_ref

4.4.3. External
External functions are functions that the CQL parser has no knowledge of. To the CQL
parser extern al function calIs are only astring that is passed down to the underlying
DBMS.

SELECT *
FROM Project
WHERE EXTERNAL ExtFunc(Project.Video, filename, parl, par2)

[Bern93]

[Bertino90]

[Celanto91]

[Fuhr90]

[Fuhr93]

[Motro86]

[Rosengren93a]

[Rosengren93b]

[Rosengren93c]

5 . References

M. Bern, P. Kool, P. Rosengren, U. Wingstedt,
"Application Design with the Intuitive Tools - two
case studies", SISU Report 1993:05.

E. Bertino, F. Rabitti, "The Multos Query
Language" , in "Multimedia Office Filing - The
Multos Approach", pp 53-74, ed. C. Thanos,
North Holland, 1990 ..

A. Celanto, M.G. Fugini, S. Pozzi, "Querying
Office Systems about Document Roles",
Proceedings of the Fourteenth Annual
International ACMJSIGlR Conference on
Research and Development in Information
Retrieval, pp 183-189, 1991.

N. Fuhr, "A Probabilistic Framework for Vague
Queries and Imprecise Information in Databases",
pp 696-707, Proceedings of the 16th VLDB
Conference, 1990.

N. Fuhr, "A Probabilistic Relational Model for
the Integration of IR and Databases", pp 309-
317, Proceedings of the Sixteenth Annual
International ACMJSIGlR Conference on
Research and Development in Information
Retrieval, 1993.

A. Motro, "Baroque: A Browser for Relational
Databases" , ACM Transactions on Office
Information Systems, vol. 4, No. 2, april 1986,
pp 164-181.

P. Rosengren, U. Wingstedt, M. Bern, P. Kool,
"ER-Based Information Retrieval In a Mixed
Database Environment", Proceedings of the 12:th
International Conference of Entity Relationship
Approach, 1993.

P. Rosengren, U. Wingstedt, M. Bern, P. Kool,
"A Tools Oriented Visual Interface for Multimedia
Databases" , NDA'93, International Symposium
on Next Generation Database Systems and Their
Applications, Japan September 1993.

P. Rosengren, U. Wingstedt, P. Kool, M. Bern,
"Accessing Information in Large Corporate
Databases - The Intuitive Approach", SISU
Report 1993:03.

[Rosengren93d]

[Wingstedt93]

P. Rosengren, "Applications of a Multimedia
Retrieval Information System - five case studies",
SISU Document 10.

U. Wingstedt, M. Bern, P. Kool, P. Rosengren,
"Intuitive Tools for Information Retrieval -
Requirements and Architecture", SISU Report
1993:04.

Appendix Syntax Description

Below we give a syntax description of CQL. A star (*) indicates repeating occurrences
while square braekets indicates options.

/*----------- ----------------Query -------------------- */

<CQL-query> ::=
<EntitySetDescription*> RELATIONSHIPS <RelationShipConstraint*>

<EntitySetDescription>: :=

SELECT <Output>
FROM <EntityClassSpecification>
WHERE <Restrictions>

/*---------------------------OutPut--------------------*/

<Output> ::=
* I <OutputList>

<OutputList> ::=
<AttrOutSpec> I <AttrOutSpec>, <OutputList>

<AttrOutSpec>
<AttrClass> I SUM (<AttrClass) I MAX (<AttrClass>
<AttrClass>) I COUNT (*) I COUNT (<AttrClass>)

I MIN (

/*---------------------------Restrictions--------------------*/

<AttributeRestriction>::=
<AttrClassSpecification> <Operator> <Operand>

I <AttributeRestriction> <BoolOp> <AttributeRestriction>
I «AttributeRestriction»
l NOT <AttributeRestriction>

<VagueRestriction> ::=
EntityClass . About (number, <stringlist>)

<RelationShipRestriction> ::=

<EntityClassSpecification> <RelationShipSpecification>
<EntityClassSpecification>

<TextRes> ::=
TEXT <TextRestriction>

<TextRestriction>::=
<TextSpecification>

<TextRestriction> <BoolOp> <TextRestriction>
«TextRestriction>1
NOT <TextRestriction>

•

<ExternalRestriction> ::=
EXTERNAL function (<AttrClassSpecification>, <Stringlist>)

<SimpleRestriction>
<AttributeRestriction>
<VagueRestriction> I
<ExternalRestriction>
(<SimpleRestriction>

<CompoundRestriction>
<SimpleRestriction> <BoolOp> <CompoundRestriction> I
(<CompoundRestriction>)

/*---------------------------Specifications--------------------*/

<EntityClassSpecification>
<EntityClass> I <Variable> [EntityClass*]

<RelationShipSpecification> :: =
<RelationShipClass> I <Variable> [RelationShipClass*]

<AttrClassSpecification> ..
<AttrClass> I <Variable> [AttrClass*]

<TextSpecification> ::=

"string of characters"
<string> WITHIN <ParSenWor> number I
<SenPara> <WordSpecification> <position> I
ANY <WordList>

<WordSpecification>
STEM <string>

/*---------------------------Keywords-------------------------*/

<ParSenWor>
p I S I W

<Position>
LAST I FIRST

<SenPara> ::=
SENTENCE I PARAGRAPH

/*---------------------------Operators-------------------------*/

<Operator>: =
<ComparisonOp>I BETWEEN I IN I LIKE I CONTAINS I PART_OF

<BoolOp> ::=

AND I OR

•

<Relop>::= <CornparisonOp> nurnber

<CornparisonOp>::= <> I > I < I >= I <=

<Operand> ::=
<TextRes> I
<OperandList>

/*---------------------------Lists-------------------------*/

<OperandList>
<NurnberList> <StringList> I <AttrList> I <FileList>

<NurnberList> nurnber I nurnber, <NurnberList>

<StringList> ::= <String> I <String>, <StringList>

<AttrList>

<Wordlist>

<AttrName>I <AttrName>, <AttrList>

<WordSpecification> I <WordSpecification>, <Wordlist>

<FileList> ::= filename I filename, <FileList>

/*---------------------------Classes-------------------------*/

<AttrClass>: :=
<EntityClass>. <AttrName>

<EntityClass>: :=

string of characters

<RelationShipClass>::=
string of characters

/*---------------------------Narnes-------------------------*/

<At trNarne> ::=
string of characters

<String> :: =
string of characters

SVENSKA INSTITUTET FÖR SYSTEMUTVECKLING
-ISISU!-

Electrum 212,164 40 Kista
Isafjordsgatan 26

Telefon 08-752 16 00 Telefax 08-752 68 00

	page1
	titles
	CQL
	Peter Rosengren

	images
	image1
	image2

	page2
	titles
	1 . Introduction

	page3
	images
	image1

	page4
	titles
	•
	•
	2. Requirements on CQL

	page5
	titles
	2.1. ConceptuaI queryin~:
	2.2. V a~ue querying

	page6
	titles
	•
	2.3. Variable querying
	2.4. Content querYlng:

	page7
	titles
	3. Language Description

	page8
	titles
	•
	3.1. Ouerv Specification
	3.2. Entity Set Specification
	It is possible to use unbound variables in an Entity Set Specification:

	page9
	titles
	3.3. AUribnte Restrictions
	3.4. Vagne Restrictions

	page10
	titles
	3.5. Relationship Restrictions

	page11
	page12
	titles
	4. Query Examples
	4.1. Conceptual Ouerying

	page13
	titles
	4.2. V a~ue Ouerying
	~ ""'oog' " 01
	",,,,,,'bl, jm wmk"~"
	.~
	A
	~~
	Figure 4.2 Example conceptual model

	images
	image1
	image2
	image3
	image4
	image5

	page14
	titles
	4.3. Variable Ouerying

	page15
	titles
	Query: Do you have any presentations or reports about user interface design?
	Query: What do you know about graphical user interfaces and query language design?
	Query: Show me all projects that do not have anything to do with multimedia but are
	Query: Is there any Product that corresponds to the abbreviation XPMG?
	Query: What do you have that is named Roland?
	Query: What is Roland?
	Query: Is there anything at all about Roland?
	SELECT *

	page16
	titles
	4.4. Content Ouerying
	4.4.1. Text
	4 . 4 . 2. Other Media Types

	page17
	titles
	4.4.3. External

	page18
	titles
	5 . References

	page19
	page20
	titles
	Appendix
	Syntax Description
	Below we give a syntax description of CQL. A star (*) indicates repeating occurrences
	/* ----------- ----------------Query -------------------- * /

	page21
	titles
	•
	p I S I W

	page22
	titles
	•

	page23
	titles
	SVENSKA INSTITUTET FÖR SYSTEMUTVECKLING

